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1. Introduction 
Consider a factorial experiment with n rep - 

licàtions per treatment combination in which the 
observations are subject to Type I (time) cen- 
soring. Under this type of censoring the obser- 
vations are known exactly only if they are less 
than or equal to an a priori selected value To. 
All that is known about other observations is 

that they exceed T . Only censoring on the right 
is considered here, since the extension to cen- 
soring on the left is straightforward. The prob- 
lem considered in this paper is how to estimate 
and test the parameters in a typical linear model 
for the mean observation at each treatment combi- 
nation using Type I censored data. The models 
for the distribution of the dependent variable 
considered here are the exponential, Weibull, 
Type I extreme - value, normal, and lognormal dis- 
tributions. 

The above problem arose in the course of 
current research by West, et al. (1974) in social 
psychology investigating the phenomenon of help- 
ing behavior and what variables influence helping 
behavior. A 24 factorial experimental design was 
used to investigate the relationship between the 
dependent variable Y and four independent vari- 
ables. Here Y =elapsed time until a passing mo- 
torist stops to help a confederate, i.e., an em- 
ployee of the experimenter, standing at the road- 
side next to a car with a raised hood. The four 
two -level factors are the sex and raced the con- 
federate, the racial composition of the neighbor- 
hood in which the experimental trial occurred, 
and the proximity of the trial to a college cam- 
pus. There were eight trials per treatment com- 
bination. For economic reasons each trial was 
halted at 15 minutes if no help had been given. 
There was no replacement if help was given prior 
to 15 minutes. Note that in this problem, the 
Type I censoring occurs at T = 900 seconds. 

The similarity of this problem to problems 
encountered in life testing situations is appar- 
ent. In life testing situations the dependent 
variable is typically time until failue or death, 
whereas the dependent variable here is time until 
helping or time until success. Clearly, this 
poses no difficulty. 

Section 2 summarizes results available in the 
statistical literature relating to parameter esti- 
mation and hypothesis testing for various experi- 
mental designs when the data are Type I, censored 
on the right, and when the model being considered 
is exponential, Weibull, Type I extreme -value, 
normal, or lognormal. Research relating to non - 
parametric approaches to this problem is not con- 
sidered. Section 3 describes a general procedure 
utilizing linear models and maximum likelihood 
estimatiors (MLE's) for the analysis of factorial 
experiments with censore4 data. Section 4 illus- 
trates the application of this procedure and Sec- 
tion 5 presents concluding remarks. 

2. Literature review 
After the author was first confronted by the 

social psychological problem given in Section 1, 
an extensive review of the life testing litera- 
ture was undertaken. Though the literature on 
the analysis of Type I censored data contains 
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much work on components of the problem considered 
here, a complete solution was not found. This 

section reviews results for problem components, 
and Section 3 presents a procedure which synthe- 
sizes these components into a complete solution 

to the problem. This section is organized as 

follows. Results are presented for five paramet- 
ric models mentioned in Section 1. For each 
model results relating to the MLE's of the param- 
eters in a one -sample problem are presented. 
This is a problem in which all observations are 

gathered under one set of conditions. Then re- 

sults relating to best linear unbiased estimates 
(BLUE's) are given. Most of the work relating to 
the problem posed in Section 1 has been done for 
a one -sample problem. Progress on estimation and 

testing problems in one -, two -, and k- sample 
problems is presented. The review then considers 

any work done on testing and estimation relative 
to linear models for the parameters of the dis- 
tributions. 

Bibliographies on life testing and related 
results have been published by Mendenhall (1958) 

and Govindarajulu (1964). A new book which sum- 
marizes much work in this area is Mann, Schafer, 
and Singpurwalla (1974). 

2.1. The exponential model 
Let t1,t2'...,tn denote observations made 

on a random variable T having the (negative) 
exponential distribution with cumulative distri- 
bution function 

FT(t) = 1 - exp(-t/0), t < 0< 0 < 

=0, t <0. 
If the data are Type I censored at time T0, the 

exact values of the ti are known only if 
Define 

xi = ti , if ti 5 TO , 

= TO , if ti > TO , for i 1,2,...,n, and 

let r denote the number of t . Using life 
testing terminology, T is tht,t3me to failure and 
r is the number of failures before the censoring 
time. The parameter is the mean of T and, in a 
life testing context, is referred to as the mean 
time between failures. Of course, the exponen- 
tial density can also be parametrized using the 
failure rate X =1/0. The failure rate is defined 
to be f(t) /[1- F(t)), where f(t) is the probabil- 
ity density function of T. 

Various authors, including Bartlett (1953), 
Bartholomew (1957), Deemer and Votaw (1955), and 
Littel (1952), have shown that the MLE of when 

n 
the data are Type I censored is 0= x /r. 

=1 
Deemer and Votaw also showed that the asymptotic 
variance of is 

02[n(1 - exp( -T0/0)] -1 

Since is an MLE, and certain mild regularity 
conditions (Mann, et al., 1974, p. 82) are sat- 

isfied here, the sampling distribution of is 

asymptotically normal. 
For small samples, Bartholomew (1957) found 

that was biased and provided an exact expres- 



sion for the bias. Mendenhall and Lehman (1960) 

gave tables to aid in computing the exact mean 

and variance of 9. Bartholomew (1963) derived 

the exact distribution of 6, which is too cumber- 
some unless n is very small. He suggested that 

n be greater than 40 for exp( -T0 /e) =0.10 or n be 
greater than 80 for exp( /8) 0.25 before as- 
suming that is approximately normal. He de- 
rived another statistic, x in his notation, which 
is approximately normal for n as small as ten, 
where 

x r(8 ) {n[l - exp(- T 

Note that Bartholomew's Equation (7) for x con- 
tains a typographical error. This statistic can 
be used to test hypotheses about or to con- 
struct confidence intervals for in one -sample 
problems. 

For the exponential model, results for 
BLUE's comparable to those cited above for MLE's 
have not been published, to the best of the au- 
thor's knowledge. This is not surprising since 
the MLE's can be expressed in closed form in this 
situation. Of course, it would be possible to 
construct BLUE's using results published for the 
Weibull distribution, since a two-parameter Wei - 
bull random variable with shape parameter equal 
to one is an exponential random variable. 

No results were found relating to hypothesis 
testing or confidence interval estimation for the 
exponential parameter in two- or k- sample prob- 
lems with Type I censoring. Mann, et aZ. (1974) 

give a test for in a two-sample problem, but 
their model assumes Type II censoring. Zelen 
(1959) discusses the analysis of a factorial ex- 
periment when the dependent variable is assumed 
to be exponentially distributed and the data are 
Type II censored. The data at each treatment 
combination are said to be Type II censored if 
the replications are observed until a preselected 
number r fail. At the time of the r'th failure 
for a particular treatment combination, all re- 
maining unfailed replications are censored. 

A number of authors have considered the 
problem of estimating the parameters of a linear 
model for in the exponential distribution. A 
typical situation is one in which the random 
variable is survival time in a medical study and 
the data analysis is to examine whether the sur- 
vival time varies by some covariate, such as age. 
However, none of the work in this area provides 
a solution to the problem posed in Section 1 be- 
cause either the articles do not consider cen- 
sored data (Fiegl and Zelen, 1965; Glasser, 1967) 
or they do not consider linear models using Type 
I censored data (Cox, 1964; Sprott and Kalb- 
fleisch, 1969; Cox, 1972; Prentice, 1973). Zip - 
pin and Armitage (1966) generalize the work of 
Fiegl and Zelen (1965) by considering censored 
data. The method of Zippin and Armitage could 
be used to solve the Section 1 problem in the 
case of one factor at two levels. For more com- 
plicated experimental designs, their method would 
be much more cumbersome and time -consuming than 
the method proposed in Section 3. For instance, 
one part of their method would require the itera- 
tive solution of k simultaneous non- linear equa- 
tions in k unknowns, where k is the number of 
treatment combinations in the experimental design 
under consideration. 
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2.2. The Weibull and Type I extreme -value dis - 
tributions 

Let t7,t ,...,t denote observations on a 
random variable T having a two- parameter Weibull 
distribution with cumulative distribution func- 
tion 

FT(t) 1 - exp[-(t /a)ß], <, 0 <a, ß 

The parameter a is the scale parameter and is 

the shape parameter of the Weibull distribution. 
If 13=1, the distribution has a constant failure 
rate and T is exponential with parameter a. If 

<l, the distribution has a decreasing failure 
rate, while if >l, it has an increasing failure 

rate. It is well known that Y has the Type I 
(smallest) extreme -value distribution with cumu- 
lative distribution function 

F (y) = 1 - exp {- exp[(y - u) /b]}, < y < 

where b =1 /ß, u (All logarithms used in this 
paper are natural logarithms.) Thus, methods de- 
veloped for one of these models can also be used 
for the other. 

For Type I censored data, Cohen (1965) has 
developed a procedure for determining the MLE's 
of the parameters a and O. Let r denote the 
ber of failures before the censoring time T . 

The first step is to obtain the MLE ß by solving 
the following equation for ß: 

+ (n- 
1 1 

+ (n -r)TÓ r 

Then the MLE a is obtained by solving the follow- 
ing equation for a: 

= + (n - r)Tg . 
i =1 

Cohen also derived the asymptotic variance -co- 
variance matrix of (â,ß). 

Methods for estimating the parameters of a 
linear model for a percentile of the distribution 
of T when the data are subject to Type II cen- 
soring have been presented by Lieblein and Zelen 
(1956). Their approach is similar to that of 
Nelson and Hahn (1972, 1973). Additional results 
relating to linear estimation are given by Mann, 
et al. (1974). 
2.3. The normal and lognormal models 

Let tl,t2,...tn denote n independent obser- 
vations of the random variable T which is normal- 
ly distributed with mean and variance a2. It 

is well known that, if T then V is lognor- 
mally distributed. Thus, methods developed for 
one of these models can be used for the other. 
For Type I censored data, Cohen (1961) gives for- 
mulas and tables for evaluating the MLE's of 
and a2 and gives asymptotic formulas for the 
variances of the MLE's. The author is not aware 
of any published results relating to BLUE's for p 
and a2 in the Type I censoring model. 

Nelson and Hahn (1972, 1973) develop methods 
for estimating the parameters of a linear model 
for p when the data are Type II censored. They 
consider methods which utilize BLUE's for p at 
each setting of the independent variables and 
thereby ignore the information in the censored 
observations. They maintain that the distinction 



between Type I and Type II censoring can be ig- 

nored in practical situations. This contention 

and a comparison of their method to the method of 

Section 3 are topics of continuing research. 

Sampford and Taylor (1959) considered the analy- 

sis.of Type II censored data in a randomized 

blocks experiment using a normal model. 

3. A general procedure for testing and estima- 
tion in the analysis of factorial experiments 

with Type I censored data 
This section describes a general procedure 

which can be used for the analysis of factorial 
experiments with Type I censored data in the many 
situations noted in Section 2 for which there 
currently is no analytic method available. The 

procedure will be described using a two- factor 
experiment. Extensions to experiments containing 
more factors are obvious. 

Consider a factorial experiment in which 
factor A at a levels is crossed with factor B at 
b levels with n replications at each treatment 
combination. Label the treatment combinations 
(i,j), i =1,2,...,a; j =1,2 ..... b. The data con- 

sist of abn observations on the dependent vari- 
able T. There is Type I censoring at the value 

T at each treatment combination. Assume that 
interest centers on a parameter of the dis- 

tribution of T in treatment combination (i,j), 

and how varies across the treatment combina- 
tions. section develops a procedure for 
investigating the without making any re- 
strictive assumptions about the specific form of 

the distribution of T. 
To investigate the relationship between 8ij 

and the factors A and B, consider the following 
linear model for the 

e-abxl abxab ßabxl 
where X is the design matrix of the factorial 
experiment in reduced form so as to be nonsingu- 
lar. For example, if a+2, b =3, 

1 1 1 0 1 

1 1 0 1 0 1 

X 
1 1 -1 -l' -1 -1 
1 -1 1 0 -1 0 

1 -1 0 -1 0 -1 
1 -1 -1 -1 1 1/ 

A model of this type is illustrated by Draper 
and Smith (1966, p. 257). 

Interest centers on the last ab -1 parameters 
in ß, since they represent, respectively, the 
main effects of A, the main effects of B, and the 
AB two- factor interactions. Typically, the first 
parameter in is of little interest since it 
represents the grand mean. 

The first step in the estimation of is the 

estimation of 8. The results quoted in Section 2 
are used to compute and the of 

and an estimate ojits variance, for each 
treatment combination (i,j), using the data 
available on that combination. For each of the 
models considered in Section 2, is known to 
be asymptotically normally distriSdted with mean 

and variance V(6 Since independent sam- 
are observed at each treatment combination, 

AN [,V(9)], where is an abxab diagonal 
matrix, whose (k,k) element is the vari- 
ance of the k'th element of O. Since 

the MLE of is I=X719. Also, 
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(X-1)']. Letting C =(cij) =X -1, it 

is easy to see that 

- ßk 
AN(0,1) . 

ab L 
Use of this statistic is complicated by the fact 
that V(04) may depend on the unknown parameter 
84. However, since 9. is a strongly consistent 
eàtimator for be substituted for 
in the variance yielding V(84), the estimated 
variance of di, and the following result still 
holds (Cramér; 1945, p. 254): 

k - k 

Lb j =1 

Define 

AN(0,1) 

V(ßk) . 

j =1 

The experimenter who wishes to test hypothe- 
ses about individual effects now has sufficient 
tools to proceed. A Bonferroni inequality can be 
used to develop simultaneous confidence intervals 
for the (Vs or to develop a test procedure which 
controls the experimentwise error rate (EER) at 
some prescribed level a. The EER is defined to 
be the probability of declaring at least one 
false positive in the analysis of the experiment, 
if in fact all effects are equal to zero. Note 
that , the grand mean, is of no interest here, 
so that ab -1 's are being tested. The Bonfer- 
roni inequality (Miller, 1966, p. 8) states that 

ßkI /[V(ßk)] z {1- /[2(ab -1)] }, for 

k 2,3, ..., 

ab 

1 -1 P ßkI > z {1- a /[2(ab -1)] 

k=2 

1 - a , 

where z{y) denotes the 100(1 -1)th percentile of 
the standard normal distribution. Thus, a pro- 
cedure yielding EER less than or equal to a is 
to declare ßk significantly different from zero 
if 

> z {l- a /[2(ab -1)] for 

With probability greater than or equal to 1 -a , 

all are contained in the intervals 

ßk + z {1- a /[2(ab- 1)] }[V(ßk)] , for k =2,3,...,ab . 

4. An illustration of the use of the general 
procedure 
This section presents the application of the 

procedure described in Section 3 to the data from 
the 24 factorial experiment discussed in Section 
1. The extensions of the procedure required for 
the analysis of data from other designs are 
straightforward. 

To begin, an exponential model for the "time 
to helping" random variable will be tentatively 
entertained. This model is reasonable, given the 
structure of the example being considered here. 

Let P, N, S, R denote the four factors in 



the design, each of which appears at two levels. 
Let 

km 
= time to helping for trial m at level 
h of factor P (college proximity), 

level i of factor N (racial composi- 
tion of neighborhood), level j of fac- 

tor S (sex), level k of factor R 
(race), m 1,2, ..., M, 

denote M observations of the random variable 
Th ,h,i,j,k =1,2. In the example considered here 
"Heaping" occurs when someone stops to help the 
confederate and "replication m" is the m'th trial 
at a particular treatment combination. Assume 

f(thijkm) - (1 /Ohijk)exp(- ' 

05 , 0 <ehijk 

Now the are known exactly only if km 5 T 900 s, the censoring time. Define 

xhijkm thijkm , 
if 5 TO , 

TO , if 
thijkm 

> TO 

rhijk = number of 5 To , 

= number of uncensored observations on 
treatment combination hijk, 
h,i,j,k, = 1,2 . 

Bartholomew (1963) noted that the MLE of 

9hijk 
is 

ehijk ml xhijkm/rhijk ' 

and that the sampling distribution of is 
asymptotically normal with mean 9hijk ansjvari- 
ance 

V *(ehijk) 
= ehijk 

{M[1 exp( -TO /9hijk)] 
} -1 

He also showed that for small M, yhi k (x 
in his 

notation) is more nearly normal than' 
ehijk' where 

rhijk(ehijk ehijk) 

/ehijk - exp( -TO /ehijk) ] 
The following material assumes that 

ehijk N[Ohijk)V(ehijk)]a where 

V(ejijk) = ehijk {M[1 - exp( -TO 
/ehijk)] } rhijk 

To express the 
k 

in terms of the usual 

reduced model for a 24 
factorial experiment, write 

!16X1 116X16 -16X1 ' 

where X denotes the design matrix for the 24 ex- 
periment. To illustrate the structure of X, con- 
sider a 22 experiment. In this situation 

1 1 1 1 

X 
1 1 -1 -1 
1 -1 1 -1 
1 -1 -1 1 

For the 24 experiment represents the grand 

mean; 
2' 3' 5 represent the main effects 
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of the four factors; 06' ß7,,ß 1, the two -fac- 
tor interactions; 

ßl4' , 
the three - 

factor interactions, }6, the tour- factor 
interaction. Note that X X =16I, where I denotes 
the 16x16 identity matrix. Hence, X -1 (1 /16)X'. 
This implies that -X =(1/16)X'9 and the of 

is given by 8=(1716)X'9. Thus, the analysis 
first uses the individual observations to esti- 
mate the parameter O for each treatment combina- 
tion. Then the g's are used to estimate the pa- 
rameters in the linear model. Individual param- 
eters can be estimated by noting that 

16 

(1 /16)X9 = (1/16) 
j1l 

where denotes the i'th row of X. Thus, 

V(ß)] , where 

16 

V(ß) (1/16)2 V(O ) . 

j j 

A Bonferroni -type procedure as described in 
Section 3 may now be used to test hypotheses 
about the parameters in the linear model, while 
controlling the EER. Table 1 gives 
1= 2,3,...,16, and a set of 95% confidence inter- 
vals for each of the parameters. These intervals 
correspond to the usual 0.05 level F -tests of 
individual effects and interactions performed on 
the results of a 24 factorial experiment using 
the conventional normal theory model. A second 
set consisting of 100(1 -0.05/15)%- 99.671 confi- 
dence intervals for each of the parameters can 
be constructed. The intervals in this second set 
are of the form ß +546.9. Using these intervals 
to test hypotheses about the parameters yields 
EER50.05. An examination of Table 1 indicates 
that only the main effect of sex is significant 
when the individual parameters are tested at an 
0.05 level. Using EER50.05, this effect is al- 
most significant. Hence, this analysis of this 
experiment indicates that the only factor which 
significantly affected the mean time to helping 
was the sex of the confederate. Women were helped 
much faster than men. 

A complete analysis of these data should also 
include a scrutiny of the assumption in the ten- 
tatively entertained model that the times to help- 
ing are exponentially distributed. Considerable 
work has been done on the question of model choice 
in this situation. Fercho and Ringer (1972) ex- 
amined four tests of exponentiality and recom- 
mended the Gnedenko test as given by Mann, et aZ. 
(1974) when testing against a Weibull alternative 
in the presence of censored data. When this test 
was applied to these data at each of the treatment 
combinations, the hypothesis that the times are 
exponentially distributed was not rejected for any 
treatment combination. 

It is exceedingly important to use a model 
which properly recognizes the censoring and the 
exponentiality of the data . To demonstrate this, 
an analysis using a conventional fixed effects 
analysis of variance model will now be presented. 
This approach is based on the assumption that the 
data are normally distributed and not censored. 
Not surprisingly this conventional model is em- 
ployed by West et aZ. (1974) in their analysis of 
these data. The parameter estimates under this 



model, denoted are ven in the last column 
of Table 1. Com$aring to indicates the 
dire consequences of ignoring the censoring and 
exponentiality. Many parameters are seriously 
underestimated. The normal model also seriously 
understates the variation in the parameter esti- 
mates. For the normal model, 95% aad 99.67% con - 
fidence intervals are of the form 53.3 and 

78.9, respectively. For the exponential 
model, they are 367.1 and + 546.9, re- 
spectively. These difficulties stem from the 
following facts. Under the normal model ignoring 
the censoring, the treatment combination means 
are determined by dividing the total time on test 
(the sum of the eight times to helping) by eight, 
the number of subjects tested on that treatment 
combination. However, the correct estimate of 

the mean, as determined under the exponential 
model, is evaluated by dividing the total time on 
test by the number of failures. For instance, 
for the treatment combination RNP, the estimate 
of the mean time to helping using the normal mod- 
el ignoring censoring is = 5940/8 =742.5 sec- 
onds. Using the exponentiá-I model which utilizes 
the information on censoring, the estimate is 

5940/3 =1980 seconds. 
It should be noted that the purpose of this 

section has been to illustrate the use of the 
procedure described in Section 3. Had the pur- 
pose been to present an extensive analysis of the 
data set,additional variables, such as cars per 
minute and the race of the passing motorists, 
would have been considered. The complete analy- 
sis of these data is considered in another 
report. 

5. Concluding comments 
Two cautionary remarks should be made. The 

method proposed here is based on the asymptotic 
normality of MLE's. Thus, it should be used with 
caution when the number of replications at indi- 
vidual treatment combinations is small, as re- 
sults by Bartholomew (1963) and Gillman, Antle, 
and Bain (1972) indicate. Also, Zelen and Danne- 
miller (1961) have demonstrated the lack of ro- 
bustness of procedures based on the exponential 
model when the true model is Weibull with shape 
parameter less than one. Hence, as in other ap- 
plications, in the words of G. E. P. Box, one 
should not make the Pygmalian mistake of falling 
in love with the model. If the data indicate 
that the model is likely to be Weibull, the MLE's 
for the Weibull parameters should be used. 
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TABLE 1 - Effect estimates wader the exponential 
and normal models and 95% confidence 
intervals for the effects wader the 
exponential model. 

Effect 

Bi 

95% 
Confidence 
Interval 

R -25.9 (-393.0, 341.2) 26.1 
S -495.3 (-862.4, -128.2) -108.0 
N 29.1 (-337.9, 396.2) 17.9 

182.4 (-184.7, 549.4) 41.6 

RS 94.6 (-272.5, 461.6) 0.5 
RN 106.5 (-260.5, 473.6) 8.6 

-62.3 (-429.4, 304.7) -8.6 
SN -51.4 (-418.4, 315.7) -20.8 
SP -173.3 (-540.4, 193.8) -11.8 
NP -169.1 (-536.2, 197.9) -27.9 

RSN -61.5 (- 428.6, 305.6) 13.0 
RSP 2.4 (- 364.7, 369.4) -10.5 
RNP 263.6 (- 103.4, 527.3) 54.6 
SNP 192.9 (- 174.2, 560.0) 31.2 
RSNP -122.4 (- 489.5, 244.6) 17.2 

in estimate of under the censored exponential 

model. 
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= estimate of under the normal model, ig- 

noring the censoring. 


